Mostrando entradas con la etiqueta Análisis Matemático. Mostrar todas las entradas
Mostrando entradas con la etiqueta Análisis Matemático. Mostrar todas las entradas

viernes, 4 de septiembre de 2020

Idea 138 de 1000 ideas de tesis: ¿Cómo diseñar una unidad didáctica para la conceptualización de la función lineal?

Idea 138 de 1000 ideas de tesis: ¿Cómo diseñar una unidad didáctica para la conceptualización de la función lineal?

Diversos conceptos matemáticos precisan de varios referentes para su enseñanza - aprendizaje, tal es el caso de la función lineal. La idea de tesis 137 de 1000 ideas de tesis pone énfasis en tratar de responder la pregunta ¿Cómo diseñar una unidad didáctica para la conceptualización de la función lineal? Veamos.
Idea 138 de 1000 ideas de tesis: ¿Cómo diseñar una unidad didáctica para la conceptualización de la función lineal?
Idea 138 de 1000 ideas de tesis: ¿Cómo diseñar una unidad didáctica para la conceptualización de la función lineal?
Angulo y Torres (2013) presentan Unidad Didáctica que articula situaciones problémicas de proyectos productivos agroindustriales en el contexto de una Institución Educativa y la función lineal, fundamentada en una propuesta de Análisis Didáctico enfocado principalmente en un contexto curricular, un análisis de contenido (Modelación, Análisis Fenomenológico, Estructura Conceptual y Sistemas de Representación) y un análisis de instrucción.

Tal Unidad Didáctica está conformada por 5 situaciones problémicas que parten de la variación y el cambio hasta la conceptualización de la función lineal.

La implementación y análisis de los resultados (mencionan los autores) de esta propuesta muestran que los estudiantes se apropian de conceptos relacionados con la función lineal de manera significativa y valida algunas dificultades reportadas por la investigación en didáctica del álgebra relacionadas con el paso de lo contextual a la generalización. 

Como se observa, los autores, a través de un análisis didáctico, de contenido y de instrucción, es como logran estructurar una unidad didáctica para mejorar y contextualizar el proceso de enseñanza - aprendizaje del concepto de función lineal por para de algunos estudiantes.

Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y finalmente terminar tu trabajo de tesis. 

Además, antes, durante y después de la tesis puedes reportar tanto resultados parciales como totales de tu investigación para que tengas más impacto en la investigación académica y científica. Para acompañarte en este proceso de formación, te invito a agendar una primera sesión virtual GRATUITA de Mentoría PREMIUM IRP, en donde aclararé tus inquietudes de publicación Académica y Científica. Nos vemos el próximo fin de semana.

Si te interesa este tema te sugiero lo siguiente:
1- Elegir a un grupo de estudiantes.
2.- Elegir un tema y/o concepto de matemáticas.
3.- Diseñar una unidad didáctica.
4.- Diseñar tus instrumentos de recolección de datos.
5.- Aplicar alguno de tus instrumentos (si pretendes conocer un antes)
6.- Instalar un curso, taller y/o clase con base en la unidad didáctica diseñada
7.- Aplicar alguno de tus instrumentos (si pretendes conocer un después)
8.- Analizar tus datos
9.- Comunicar tus resultados.
10.- Disfrutar de investigar investigando

 Además te recomiendo la siguiente lectura:

Angulo, O., Torres, L. A. (2013). Análisis de la articulación de situaciones problémicas de proyectos productivos agroindustriales y la función lineal. En Actas del VII Congreso Iberoamericano de Educación Matemática (pp. 1025 - 1036). Montevideo, Uruguay: VII CIBEM.
Idea 139 de 1000 ideas de tesis: ¿Cuáles son las dificultades que enfrentan los estudiantes cuando aprenden funciones logarítmicas?

Idea 139 de 1000 ideas de tesis: ¿Cuáles son las dificultades que enfrentan los estudiantes cuando aprenden funciones logarítmicas?

Las dificultades pueden ser explicadas por las transformaciones en los registros semióticos.

Dificultades que enfrentan los estudiantes cuando aprenden funciones logarítmicas

- El aprendizaje de la función logarítmica hace uso de registros multifuncionales empleados también en otras disciplinas científicas.

- Estas transformaciones son el motor de la actividad matemática que esperamos que nuestros alumnos realicen.

Idea 139 de 1000 ideas de tesis: ¿Cuáles son las dificultades que enfrentan los estudiantes cuando aprenden funciones logarítmicas?
La función logarítmica puede ser compuesta y o multiplicadas con otras funciones, en la imagen ha sido multiplicada con la función senoidal. y= (1/10) ((lnx) /2)(senx)

Idea de tesis 139 de 1000 ideas de tesis. 

Aprender un contenido particular de matemáticas tiene diversas aristas y explicaciones. Tal es el caso del aprendizaje de las funciones logarítmicas por parte de los estudiantes, en donde emerge la pregunta ¿Cuáles son las dificultades que enfrentan los estudiantes cuando aprenden funciones logarítmicas? y es que el aprendizaje de la función logarítmica, a decir de Morales (2013) se realiza mediante transformaciones sobre los registros semióticos... El aprendizaje de la función logarítmica hace uso de registros multifuncionales empleados también en otras disciplinas científicas, como los registros verbales y los registros figurales o gráficos.

Morales (2013) analiza las dificultades presentadas cuando el alumno realiza actividades de aprendizaje sobre la función logarítmica, a través de los registros de representación semiótica y las transformaciones que se realizan sobre estas representaciones.

A través de la aplicaciones de ciertos instrumentos de medición y evaluación, Morales logra observar que algunos alumnos tuvieron dificultades en la realización de las transformaciones, principalmente en las conversiones no congruentes y también cuando se invierte el sentido de la conversión de registros. A partir de allí encuentra dos dificultades notables.
  • La primera dificultad encontrada fue observada cuando los alumnos estaban obligados a realizar una conversión del registro gráfico al registro simbólico, ellos debían realizar una aprehensión perceptiva sobre el gráfico dado para obtener la información necesaria para realizar dicha conversión. 
  • La segunda dificultad fue observada cuando a los alumnos se les presentó una actividad contextualiza en coordinación con los registros en lengua natural y el registro simbólico.  Ellos debían realizar una aprehensión lingüística sobre el texto del problema planteado para así de esta manera poder interpretar la información dada el registro simbólico. 
Con estos resultados, Morales, espera:
  • Que esta investigación propicie una reflexión sobre nuestra actividad docente, dejando el tipo de enseñanza en un solo registro y recurrir más a la coordinación entre diversos registros para lograr un mejor aprendizaje de las matemáticas. 
  • Lograr que nuestros alumnos aprendan a darle el uso debido a las representaciones semióticas, no sólo empleadas para comunicar saberes matemáticos sino principalmente para realizar transformaciones sobre dichas representaciones semióticas. Entendiendo que estas transformaciones son el motor de la actividad matemática que esperamos que nuestros alumnos realicen.
Como se observa localizar las dificultades de los estudiantes con un contenido particular permite entender el fenómeno de la enseñanza y aprendizaje de la Matemática, para transformarla y proponer algunos mecanismos que coadyuven a que éste aprendizaje sea cada vez más adecuado a lo que sucede en éste fenómeno multicausal.

Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y finalmente terminar tu trabajo de tesis. 

Además, antes, durante y después de la tesis puedes reportar tanto resultados parciales como totales de tu investigación para que tengas más impacto en la investigación académica y científica. Para acompañarte en este proceso de formación, te invito a agendar una primera sesión virtual GRATUITA de Mentoría PREMIUM IRP, en donde aclararé tus inquietudes de publicación Académica y Científica. Nos vemos el próximo fin de semana.

Si te interesa este tema te sugiero lo siguiente:

  1. Elegir a un tema concreto de matemáticas
  2. Elegir un grupo de estudiantes
  3. Diseñar tus instrumentos de colección de datos
  4. Aplicar tus instrumentos
  5. Analizar tus datos
  6. Comunicar tus resultados.
  7. Disfrutar de investigar investigando

Además te recomiendo la siguiente lectura:

Morales, Z. E. (2013). Análisis de las transformaciones semióticas en el aprendizaje de la función logarítica. En Actas del VII Congreso Iberoamericano de Educación Matemática (pp. 1037 - 1044). Montevideo, Uruguay: VII CIBEM.

miércoles, 3 de abril de 2019

Idea de tesis 170 de 1000 ideas de tesis: ¿Cuál es la tipología de comprensiones que tienen los estudiantes de matemática acerca de la ubicación y graficación de los números reales?

Idea de tesis 170 de 1000 ideas de tesis: ¿Cuál es la tipología de comprensiones que tienen los estudiantes de matemática acerca de la ubicación y graficación de los números reales?

Clasificar las comprensiones de los estudiantes nos permite ahondar en su estudio.

Centrar el estudio en la comprensión de los números reales por parte de los estudiantes permite realizar propuestas educativas

- Se pueden jerarquizar las comprensiones.

- Las comprensiones se relacionan con la formación matemática.

Idea de tesis 170 de 1000 ideas de tesis: ¿Cuál es la tipología de comprensiones que tienen los estudiantes de matemática acerca de la ubicación y graficación de los números reales?
Idea de tesis 170 de 1000 ideas de tesis: ¿Cuál es la tipología de comprensiones que tienen los estudiantes de matemática acerca de la ubicación y graficación de los números reales?

Idea de tesis 170 de 1000 ideas de tesis. 


Siguiendo con la línea del estudio de las producciones matemáticas de los estudiantes que reflejan cierta comprensión de los tópicos matemáticos estudiados emerge la pregunta ¿Cuál es la tipología de comprensiones que tienen los estudiantes de matemática acerca de la ubicación y graficación de los números reales? La idea de tesis 170 coloca una posible respuesta a la pregunta anterior.

Montoro (2017) estudia las concepciones de estudiantes de secundaria y universidad sobre la representación de los números reales en la recta en el que participaron 307 estudiantes con distinto grado de formación matemática. Ella analiza tres tareas que versaron sobre la representación de distintos tipos de números reales en la recta; diferenciación de racionales y reales en la recta numérica y modos de concebir la naturaleza de la recta numérica. Asimismo caracterizó las respuestas de los estudiantes en cada una de las tareas, realizándo un Análisis Factorial de Correspondencias Múltiple y posterior Clasificación Jerárquica de los estudiantes según fueran similares sus respuestas, asociándose las clases resultante con el nivel de estudio en matemáticas de los estudiantes.

La citada autora expone un gradiente de profundidad de concepciones, desde la ajenidad frente al problema asociada a estudiantes con menor nivel de estudio de matemática, pasando por una visión centrada en los reales identificados como los enteros y sus fracciones o la densidad numérica potencial de la recta identificando a los reales con los decimales, finalmente muestra a estudiantes avanzados de Biología con una concepción instrumental de la recta como sostén de las magnitudes, y estudiantes avanzados de Matemática que se centraron en la completitud de los reales y la continuidad de la recta.

Con el estudio de Virginia Montoro en el año 2017 se muestra la diversidad de concepciones que pueden operar en un mismo grupo de estudiantes encontrando un gradiente de profundidad de estas ideas que comienzan desde de lo que ella denomina ajenidad (7%) y considerar a los reales como los enteros y sus fracciones y no apropiarse de la representación de los reales en la recta (18%); ambas clases constituidas por estudiantes con menor nivel de estudios de matemática.

La autora citada en el párrafo anterior indica que en una zona intermedia se ubica la concepción discreta en dos versiones, una en la que se considera las propiedades de los enteros en los décimos (26%), principalmente estudiantes de secundaria y otra en la que se identifica a los reales con los decimales (19 %) con una notable presencia de estudiantes de MI y BI. Luego encuentra los estudiantes avanzados de Biología con una concepción mediada por la utilidad de los números reales identificándolos con las magnitudes (13%). El 14% de la población concibe el cardinal de los conjuntos infinitos como una única cantidad infinita y a los reales identificados con los decimales. Por último, el 5% de la población considera a los reales como completos y la recta como continua, son principalmente estudiantes avanzados de Matemática.

Los párrafos anteriores indican una línea de investigación relacionada a la caracterización de la tipología de concepciones que reflejan las producciones matemáticas de estudiantes de distintos niveles educativos y con distintas formaciones matemáticas, lo que la hace una línea fructífera de actuación.

Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y finalmente terminar tu trabajo de tesis. 

Además, antes, durante y después de la tesis puedes reportar tanto resultados parciales como totales de tu investigación para que tengas más impacto en la investigación académica y científica. Para acompañarte en este proceso de formación, te invito a agendar una primera sesión virtual GRATUITA de Mentoría PREMIUM IRP, en donde aclararé tus inquietudes de publicación Académica y Científica. Nos vemos el próximo fin de semana.

Si te interesa este tema te sugiero lo siguiente:
  1. Elegir a un tema concreto de matemáticas
  2. Elegir un grupo de estudiantes
  3. Diseñar tus instrumentos de colección de datos
  4. Aplicar tus instrumentos
  5. Analizar tus datos
  6. Comunicar tus resultados.
  7. Disfrutar de investigar investigando
Además te recomiendo la siguiente lectura:

Montoro, V. (2017). El número real y la recta. Comprensiones de estudiantes secundarios y universitarios. En el libro de Actas del V III Congreso Iberoamericano de Educación Matemática  Comunicaciones breves 101 - 200. (pp. 175 - 183). Madrid, España: VIII CIBEM.

sábado, 30 de marzo de 2019

Ideas de tesis 166 de 1000 ideas de tesis: ¿La invención de problemas matemáticos coadyuva a la comprensión de los temas matemáticos?

Ideas de tesis 166 de 1000 ideas de tesis: ¿La invención de problemas matemáticos coadyuva a la comprensión de los temas matemáticos?

Inventar problemas ayuda a creatividad.

Detectar errores e inventar problemas para superarlas

- La invención de problemas sirve en la Matemática.

- Los estudiantes de matemáticas mejoran su aprendizaje al inventar problemas.

Ideas de tesis 166 de 1000 ideas de tesis: ¿La invención de problemas matemáticos coadyuva a la comprensión de los temas matemáticos?
Ideas de tesis 166 de 1000 ideas de tesis: ¿La invención de problemas matemáticos coadyuva a la comprensión de los temas matemáticos?

Idea de tesis 166 de 1000 ideas de tesis. 


En la búsqueda de estrategias para superar errores que presentan los estudiantes al aprender un tema de matemáticas se han propuesto un número considerable, una de ella tiene que ver con la invención de problemas alrededor de los errores más frecuentes que cometen los estudiantes con la intención de que las superen. La idea de tesis 166 de 1000 ideas de tesis coloca una respuesta a la pregunta ¿La invención de problemas matemáticos coadyuva a la comprensión de los temas matemáticos?

Salazar (2017) presenta resultados parciales de un estudio que investiga el efecto que produce, en la superación de errores matemáticos frecuentes, la estrategia de invención de problemas. Para ello se eligió como contexto temático el de sumas de series de potencias y numéricas, dado que este es un tema cuya comprensión presenta dificultades en los estudiantes. Se seleccionó una muestra de 24 alumnos de un curso de análisis real dirigido a futuros profesores de matemática, en la que los participantes debían detectar y listar los errores que usualmente cometen, para luego crear problemas en una actividad colaborativa, que ayudaran a superarlos. Para contrastar los datos, se aplicó una prueba de diagnóstico al inicio de la actividad y un examen al finalizarla, que evidencian resultados positivos y muestran cómo la estrategia de creación de problemas, logró una superación significativa de algunos de los errores detectados, mejorando el rendimiento académico de los participantes.

Además, agrega:
La combinación del trabajo colaborativo en la detección de errores propios junto con la invención de problemas, resultó una manera bastante eficiente de superar las dificultades para hallar la suma de una serie numérica y de potencias. Cuando los estudiantes tuvieron que resolver el problema creado por otro grupo, estaban mejor preparados, debido a la experiencia previa de haber tenido que crear un problema similar, mostrando más pericia en su solución y disminuyendo los errores previos. Se lograron mejores resultados en el examen corto que evaluó este tema lográndose una mejoría significativa en los resultados (el promedio subió de un 53% en la prueba diagnóstica a un 76% después de la actividad de invención de problemas).

Como se observa, detectar dificultades y luego realizar un proceso de invención de problemas para superarlos influye en la mejora de la enseñanza - aprendizaje de la matemática. Dado que hay una vasta cantidad de temas de matemáticas y varios niveles educativos, una posible línea que puedes abordar es la invención de problemas matemáticos por parte de los estudiantes.

Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y finalmente terminar tu trabajo de tesis. 

Además, antes, durante y después de la tesis puedes reportar tanto resultados parciales como totales de tu investigación para que tengas más impacto en la investigación académica y científica. Para acompañarte en este proceso de formación, te invito a agendar una primera sesión virtual GRATUITA de Mentoría PREMIUM IRP, en donde aclararé tus inquietudes de publicación Académica y Científica. Nos vemos el próximo fin de semana.

Si te interesa este tema te sugiero lo siguiente:
  1. Elegir a un tema concreto de matemáticas
  2. Elegir un grupo de estudiantes
  3. Diseñar tus instrumentos de colección de datos
  4. Aplicar tus instrumentos
  5. Analizar tus datos
  6. Comunicar tus resultados.
  7. Disfrutar de investigar investigando

Además te recomiendo la siguiente lectura:

Salazar, L. (2017). Invención de problemas como estrategia didáctica para superar errores matemáticos: Una experiencia con sumas de series. En el libro de Actas del V III Congreso Iberoamericano de Educación Matemática  Comunicaciones breves 101 - 200. (pp. 116 - 126). Madrid, España: VIII CIBEM.

sábado, 16 de febrero de 2019

Ideas de tesis 158 de 1000 ideas de tesis: ¿Como ayudar a que el alumno identifique claramente las principales dificultades de la materia de análisis matemático en su formación en Matemáticas?

Ideas de tesis 158 de 1000 ideas de tesis: ¿Como ayudar a que el alumno identifique claramente las principales dificultades de la materia de análisis matemático en su formación en Matemáticas?

Listar los errores cometidos permite reconocer su ocurrencia.

Determinar los errores de los estudiantes permite auxiliarles

- Caracterizar los errores matemáticos permite conocer al grupo clase.

- La observancia de la frecuencia de ocurrencia de un error permite tomar cartas en el asunto.

Ideas de tesis 158 de 1000 ideas de tesis: ¿Como ayudar a que el alumno identifique claramente las principales dificultades de la materia de análisis matemático en su formación en Matemáticas?
Ideas de tesis 158 de 1000 ideas de tesis: ¿Como ayudar a que el alumno identifique claramente las principales dificultades de la materia de análisis matemático en su formación en Matemáticas?

Idea de tesis 158 de 1000 ideas de tesis. 


Una búsqueda constante de mecanismos que auxilien tanto a profesores como estudiantes de matemáticas a superar las dificultades que éstos últimos enfrentan al aprender un concepto de matemática ha conllevado a un conjunto diversos acercamientos que impactan en el espacios escolar. Uno de tales mecanismos es el estudio de la caracterización y análisis de los errores que cometen los estudiantes al resolver una tarea matemática. La idea de tesis 158 de 1000 ideas de tesis trata de dar una respuesta a la pregunta ¿Como ayudar a que el alumno identifique claramente las principales dificultades de la materia de análisis matemático en su formación en Matemáticas? desde la caracterización de los errores que comete. 

A decir de Sepulcre (2017) en el caso del grado en matemáticas, las primeras asignaturas del área de análisis matemático resultan ser muy a menudo un escollo inexorable para el alumnado. A partir de esta observación, el autor realiza un trabajo cuyo interés es ayudar a que el alumno identifique claramente las principales dificultades de la materia mediante la exposición de los fallos, errores o confusiones usuales que se cometen a lo largo de las pruebas de evaluación de carácter teórico-práctico realizadas a lo largo del curso, y también de la lista de criterios y penalizaciones específicas que se emplean en la corrección de las mismas.

Sepulcre (2017) menciona que la puesta en práctica de la exposición de los fallos, ayuda tanto profesores como a estudiantes.
  • A los profesores pues pueden detectar los conceptos de difícil comprensión con tal de incidir más en ellos en posteriores explicaciones teóricas.
  • A los estudiantes puesto que poseen un mejor análisis y autoconsciencia con respecto a las dificultades de la materia en cuestión

Con estos resultados, Selpulcre (2017), espera:
  • Que se logre paliar en parte el déficit con el que, generalmente, se parte en la materia en cuestión. 
En la línea anteriores se ha visto que la caracterización de los errores de los estudiantes permite que se mejore el proceso de aprendizaje de la matemática escolar, la haber una infinidad de materias y tópicos de matemáticas, es importante retomar y contextualizar ésta idea a una cuestión personal.

Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y finalmente terminar tu trabajo de tesis. 

Además, antes, durante y después de la tesis puedes reportar tanto resultados parciales como totales de tu investigación para que tengas más impacto en la investigación académica y científica. Para acompañarte en este proceso de formación, te invito a agendar una primera sesión virtual GRATUITA de Mentoría PREMIUM IRP, en donde aclararé tus inquietudes de publicación Académica y Científica. Nos vemos el próximo fin de semana.

Si te interesa este tema te sugiero lo siguiente:
  1. Elegir a un tema concreto de matemáticas
  2. Elegir un grupo de estudiantes
  3. Diseñar tus instrumentos de colección de datos
  4. Aplicar tus instrumentos
  5. Analizar tus datos
  6. Comunicar tus resultados.
  7. Disfrutar de investigar investigando

Además te recomiendo la siguiente lectura:

Sepulcre, J.M. (2017). Estrategias docentes en las primeras asignaturas de análisis matemático del grado en matemáticas. En el libro de Actas del VIII Congreso Iberoamericano de Educación Matemática (pp. 173 - 184). Madrid, España: VIII CIBEM.

Más Ideas De Tesis